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Parallel Adaptive Mesh Refinement and Redistribution on 
Distributed Memory Computers 

C. Özturan, H. L. deCougny, M. S. Shephard, J.E. Flaherty 
Scientific Computation Research Center 

Rensselaer Polytechnic Institute 
Troy, NY 12181 

Abstract 
A procedure to support parallel refinement and redistribution of two dimensional unstructured 

finite element meshes on distributed memory computers is presented. The procedure uses the mesh 
topological entity hierarchy as the underlying data structures to easily support the required adjacency 
information. Mesh refinement is done by employing links back to the geometric representation to 
place new nodes on the boundary of the domain directly on the curved geometry. The refined mesh 
is then redistributed by an iterative heuristic based on the Leiss/Reddy [9] load balancing criteria. 
A fast parallel tree edge-coloring algorithm is used to pair processors having adjacent partitions 
and forming a tree structure as a result of Leiss/Reddy load request criteria. Excess elements are 
iteratively migrated from heavily loaded to less loaded processors until load balancing is achieved. 
The system is implemented on a massively parallel MasPar MP-1 system with a SIMD style of 
computation and uses message passing primitives to migrate elements during the mesh redistribution 
phase. Performance results of the redistribution heuristics on various test meshes are given. 

1    Introduction 

Adaptive finite element methods, driven by automatic estimation and control of errors have gained 
importance recently due to their ability to offer reliable solutions to partial differential equations [6]. 
An adaptive method starts with a solution on a coarse mesh using a low-order method and, based 
on an estimate of the global and local errors, either refines the mesh (h-refinement) and/or increases 
the order of numerical solution (p-refinement). The sequential implementations of these methods 
have proved to be very efficient by concentrating computations on regions of high activity and by 
providing exponential rates of convergence when proper combinations of h- and p-refinement are 

employed. 
The irregular and evolving behavior of the computational load in adaptive strategies on com- 

plex domains becomes problematic when parallel distributed-memory machine implementations are 
considered. Complete parallelizations of these methods necessitate additional and difficult stages of 
partitioning, parallel refinement and the redistribution of the refined mesh. Many heuristics have 
been devised to partition the initial unstructured mesh and hence minimize the load imbalance and 
interprocessor communication among processors. The redistribution of the refined mesh can also be 
done by parallelizing similar partitioning heuristics. We note, however, that global methods such 
as recursive mesh subdivision techniques which operate on the whole mesh do not take effective 
advantage of the incremental changes in the refined mesh. Changes in the mesh might not call 
for redistribution because the cost of redistributing may be more than the cost of performing the 
computations with a slightly imbalanced load. More importantly, the redistribution may involve 



only local adjustments. Therefore the use of heuristics that operate locally by migrating elements 
between the mapped neighboring partitions is an attractive alternative. 

This paper presents a procedure for parallel refinement and redistribution of two dimensional 
finite element meshes on distributed-memory computers. Section 2, reviews the currently avail- 
able partitioning and redistribution techniques and discusses the suitability of these techniques 
for adaptive techniques. Sections 3 and 4 present the data structures that are used to store the 
mesh, the adjacency links between the processors and the specific geometric operators needed to 
handle h-refinement on curved boundaries. The refined mesh is redistributed by employing an 
iterative heuristic based on taking pairs of processors having adjacent partitions and migrating 
elements from heavily loaded to less loaded processor. We describe the redistribution algorithm 
in Section 5. Finally, we report performance results of the redistribution heuristic based on SIMD 
style of computation and message passing primitives on a 2048-processor massively parallel MasPar 

MP-1 system. 

2     Related Work 

The current repertoire of partitioning and redistribution algorithms can be classified into three 

categories. 

1. Recursive Bisection (RB) Techniques which repeatedly split the mesh into two-submeshes. 
Coordinate RB methods bisect the elements by their spatial coordinates. If the axis of bi- 
section is Cartesian, then it is called Orthogonal RB [2]. If the axes are chosen to be along 
the principal axis of the moment of inertia matrix, then it is called Moment RB. Spectral 
RB is another method which utilizes the properties of the Laplacian matrix [5] of the mesh 
connectivity graph and bisects it according to the eigenvector corresponding to the second 
smallest eigenvalue of this matrix [11]. 

2. Probabilistic Methods which include simulated annealing and genetic algorithms. These meth- 
ods however require many iterations and are expensive to use as mesh partitioning meth- 

ods [20]. 

3. Iterative Local Migration Techniques exchange load between neighboring processors to improve 
the load balance and/or decrease the communication volume. The definition of processor 
neighborhood can either be the hardware link or the connectivity of the split domains. The 
Cyclic pairwise exchange [7] pairs processors connected by a hardware link and exchanges 
the nodes of the mesh to improve the communication. Leiss/Reddy on the other hand uses 
the hardware link as the neighborhood to transfer work from heavily loaded to less loaded 
processors. The Tiling algorithm [4][19] extends the Leiss/Reddy algorithm to the case where 
the neighborhood is defined by the connectivity of the split domains. Lohner et al. [10] 
algorithm exchange elements between subdomains according to a deficit difference function 
which reflects the imbalance between an element and its neighbors. 

Adaptive methods refine the mesh incrementally and hence require periodic redistribution of 
finite elements. If used on the whole mesh, RB methods require complete remapping of the elements 
and therefore have a fixed cost. This introduces substantial overhead due to transfer of all elements 
to their new destinations. RB methods can handle the heterogenous load distributions on each 
element by assigning weights to each element. Recent efforts incorporate the communication costs 
into the ORB method by considering the weights on the cut edges of the split domains [3]. RB 
methods applied globally on the whole mesh are too costly to be used repeatedly to redistribute a 



mesh dynamically with an adaptive technique. They may however, offer their advantages if applied 
locally to the incrementally altered mesh [16]. 

Iterative local migration techniques offer important advantages with an adaptive technique. 
Since these methods perform local transfers, incremental changes in the mesh can be propagated 
to the processors to load balance and reduce communication volume without solving an expensive 
global partitioning problem. The elemental cost, which is the sum of the computational workload 
represented by the degrees of freedom (dofs) and the communication, represented by the dofs on the 
partition boundary edges, can also be handled by selecting elements according to a cost function 
for transfer. A disadvantage of iterative local migration techniques is that many iterations may be 
required to regain global balance and hence elements reach their final destination after many local 
transfers rather than directly. Assuming each iteration is fast the cost due to local transfer steps is 
amortized by the smaller number of elements that are moved. Hence, they should be advantageous 
for use with adaptive techniques. 

The redistribution strategy given here is an iterative local migration scheme. It is based on the 
Leiss/Reddy [9] algorithm and employs selection criteria similar to Wheat et al. [19] in transferring 
elements. Unlike, these approaches, however, the processors are paired during load transfers similar 
to the pairwise exchange heuristic used by Hammond [7]. Our pairing procedure does not pair 
processors connected by hardware link in the static processor graph, but rather in the dynamically 
changing graph representing the partitioned mesh (see Section 5). 

3    Mesh Data Structures 

Parallel h- and p-refinement and dynamic redistribution algorithms for the refined mesh require 
various mesh adjacency and mesh entity classification information. The current procedure operates 
on the triangular unstructured meshes generated by the shell capability of the Finite Octree proce- 
dure [13]. The data structure used in this mesh generator is the complete mesh topological entity 
hierarchy [18] which provide a two-way link between the mesh entities of consecutive order, i.e., 
regions, faces, edges, and vertices. Although this hierarchical data structure requires more memory 
than classic finite element data structures (e.g., element-node relationship), they have proven to be 
powerful especially in the context of refinement. It is quite clear that h-refinement benefits from 
a complete hierarchy to delete and create mesh entities efficiently. The presence of a complete 
hierarchy is also very useful with the p-version of the finite element method, since it easy to attach 
the edge and interior modes [14] to the mesh entities. Additionally, mesh entities are explicitly 
classified against the geometric model describing the domain boundary. In two dimensions, mesh 
faces are always classified as being in the interior of the domain, mesh edges are classified either 
in the interior or on the boundary edge, and mesh vertices are classified either in the interior, on 
boundary edge, or on a boundary vertex. Classification guarantees that the mesh is still valid after 
h-refinement. Also, any mesh vertex classified on a boundary edge stores its parametric coordinate 
on the corresponding boundary edge. Since generally large elements are used in the p-version, it 
is important to represent edges on curved boundaries accurately. The readily available classifica- 
tion and the parametric coordinates make it easy to implement special boundary-element mapping 
techniques. Figure 1(a) illustrates the relationship between the entities and the geometric model 
in the data structures. 

Because mesh entities are distributed across processors corresponding to the current partition- 
ing, additional data has to be stored in order for a partition to have access to information stored 
on neighboring partition. In two dimensions, each mesh edge on a partition's boundary points to 
a corresponding identical, duplicate mesh edge on the neighboring partition's boundary.  Storing 



processor 1 processor 2 

r                "s classipcanon 
1    Face           *■ 

H 
t      \ [   Edge    J                * 

1   Vertex   J                * 

Geometric 
Model 

(a) 

processor 3 processor 4 

(b) 

edge adjacency 

link (stored) 

node adjacency 
obtained by 
message passing 

Figure 1: (a) Mesh data structures (b) across processor links 

links between these duplicate edges is sufficient to allow for inter-processor mesh entity access. 
The additional information regarding inter-processor vertex connectivities is obtained by sending 
messages and following the edge links across processors. Although this approach introduces addi- 
tional communication, it saves substantial amount of memory by alleviating the problem of storing 
variable length vertex connectivity lists. Figure 1(b) shows an example of stored edge links across 

partition boundaries. 

4    Parallel H-refinement 

The h-refinement procedure is edge-based; thus each mesh edge in the mesh is either marked for 
refinement or not. Duplicate mesh edges on partition boundaries must be marked identically. Each 
mesh face can have from zero to three marked mesh edges. For each possible configuration, a 
template has been defined [17] as shown in Figure 2: 

1. 1-edge: the triangle is divided into two (also known as a green subdivision [1]). 

2. 2-edge: the triangle is divided into three. In this case, there is always a choice between two 
subdivisions. In order to limit element quality degradation, the cut along longest edge is 
performed first [12]. 

3. 3-edge: the triangle is subdivided into four. For simplicity, the subdivision that produces 4 
triangles similar to the parent is chosen (also known as a regular subdivision [1]). 

Elements are subdivided by traversing the list of mesh faces known by the processor in parallel. 
Once all mesh faces have been visited, mesh edges resulting from refinement on a partition boundary 
are linked to their identical duplicates on the neighboring partition. The refined parent entities 
are not deleted immediately and separate operators are provided for this purpose. In this way, 
information can be transferred from the parent entities to their off-spring before the deletion. 

Any mesh vertex or edge resulting from the refinement of a mesh edge inherits the classifica- 
tion of the parent edge. With curved geometry, refinement vertices that are classified on the model 
boundary are snapped to the proper model entity. The parametric coordinate of any refinement ver- 
tex classified on the model boundary is obtained as a simple average of the parametric coordinates 



Figure 2: Refinement templates. 
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Figure 3: (a) Unbalanced ioad in each partition, (b) partition graph PG, (c) load request, (d) load 
transfer between pairs in steps 0,1,2,3. 

by a number of advantages. Firstly, smaller number of messages and the synchronous transfer of 
load increase communication performance. Second, since the processors are synchronized by pairs, 
a greater repertoire of selection criteria to decide which elements to transfer can be employed. 
Unlike [19], where elements can be transferred from only heavily load to less loaded processors, 
the pairing allows elements to be transferred from the less loaded to the heavily loaded pair. 
This can be useful in improving the surface to volume ratio of the partitions. Since there is no 
explicit synchronization by edge coloring in [19], this approach would make implementation of this 
bidirectional transfer of load extremely difficult. 

Figure 3(d) shows the coloring phase that we employ to pair the processors. If A(G) denotes 
the maximum vertex degree (number of edges incident on a vertex) in a graph G, then Vizing's 
theorem [15] shows that the graph G can be edge-colored using C colors where A(G) < C < 
A(G) +1. For some special graphs including the trees the number of colors needed is exactly A(G). 
Therefore, A(T,) colors are required to color the tree T,\ The main steps of the REDISTRIBUTE 
algorithm are illustrated in Figure 4. 
Before presenting the details of REDISTRIBUTE, a summary of the steps is given. 

• Step 1: The steps of transferring work between paired processors is iterated until the load 



Algorithm REDISTRIBUTE; 
Input:    An initial mesh distributed on the 

processors. 
Output: Redistributed mesh with reduced imbalance. 

1. While  not converged  do 
2. Compute neighboring load differences. 
3. Request load from neighbor processor having 

largest load difference, (creates processor tree T) 
4. Determine amount of load to be sent or received. 
5. Set-up Euler tour adjacency links for tree T. 
6. Color the tree T by Euler touring. 

7. for each  color C  do 
8. if processor owns color C  and  is a neighbor 

of color C pair processor  then 
9. Transfer load between the pair processors. 

end for 
end while 

Figure 4: Redistribution algorithm. 

on each processor converges to a value close to the optimal balance. The convergence of the 
Leiss/Reddy algorithm and the current algorithm's convergence criteria is given in Section 5.3. 

Step 2: Load differences are computed by having each processor send a load value to its 
neighbors and correspondingly receive load values from its neighbors. This step takes A(Gp) 
time. 

Step 3: The Leiss/Reddy [9] load request process is invoked and results in the forest of trees 
T{. The edges of Gp is simply marked when a request has been made indicating whether or 
not it is a tree edge. Since the incoming requests for load should be sorted, this step takes 
0(max,{d,- -logrf,}) time where d,- = A(T,). 

Step 4: Deciding how much load to transfer to requesting processors is crucial in making the 
redistribution algorithm to converge. Criteria for this step are given with convergence criteria 
in Section 5.3. 

Steps 5-6: To facilitate efficient parallel scan operations on the trees Tt-, each tree is linearized 
by constructing an Euler Tour on it. The details of the Euler Tour construction can be 
found in [8]. In the present implementation, each processor stores the links to its adjacent 
processors; hence, this list is traversed and local addresses sent to the adjacent processors. 
The received messages are sorted and the links stored. Hence, constructing Euler Tour takes 
0(ma,Xi{di-log d{}) time. Having constructed the Euler Tour, the tree is colored by employing 
scan operation on the linearized tree. The complexity of coloring is 0(max,{d,-log \Vi\}) where 
|Vi| denotes the number of vertices in tree T,-. The details of tree edge coloring are given in 
Section 5.1. 



• Steps 7-8: The steps of load transfer are synchronized by the edge coloring of the tree. One 
iteration of the redistribution algorithm involves C steps corresponding to the max,-(A(r;)) 
colors. Note that this synchronization also allows for bi-directional transfer of load between 

pair processors. 

• Step 9 selects elements to be transferred. A cost function is associated with each element to 
be transferred. This cost reflects the communication as well as the computational cost of the 
element. The details of this procedure are given in Section 5.2. 

5.1    Fast Tree Edge-Coloring Algorithm to Pair Processors 

Given a tree r(V, E) with vertices V and edges E, an Euler Tour, TEuier(V, E'), can be constructed 
by replacing each edge (u,v) € E by two directed arcs < u,v >e E' and < v,u >6 E' and 
setting up Euler Tour adjacency links. The directed graph TEuier(V, E') linearizes the tree T and 
allows efficient global scan operations to be done by performing parallel pointer jumping. The edge 
coloring of the tree is performed by assigning special weights to the arcs in TEuler, scan summing 
these weights and taking modulo the maximum tree vertex degree, A(r), of the summed weights. 

Let parent(u) denote the parent vertex of u in the rooted tree T, num.child(u) denote the 
number of children of v, and childjrank(u) denote the left to right rank of children of a parent 
vertex. Hence, if u is a parent vertex, then its leftmost child has childjrank = 1 and its rightmost 
child has child-rank = numjchild{u). This classifies the arcs of TEuler into three types, i.e., 

< u,v > is: 

• a forward arc if u = parent(v). 

• an interior backward arc if v = parent(u) and childjrank(u) < num.child(v) 

• a last backward arc if v = parent(u) and childjrank(u) = num.child(v) 

With these definitions, the tree edge-coloring algorithm is illustrated in Figure 5. 

Tree Edge Coloring Algorithm; 
Input:    A tree T with an Euler Tour TEUUT defined on it. 
Output: Edge coloring of the tree on forward edges. 

1. Assign weights to each arc < u,v >: 
• weight=1 if forward arc. 
• weight=0 if interior backward arc. 
• weight= A(T) - num.child(v) if last backward arc. 

2. Scan sum weights by parallel pointer jumping. 
3. Take summed weight modulo A(T) on forward arcs. 

Figure 5: Coloring Algorithm. 

Step 1 of the above algorithm takes 0(A(T)) time since each processor has to traverse its 
list of neighbors to make weight assignment. The maximum number of neighbors is given by the 
maximum degree A(T). Step 2 involves efficient parallel scan operation. Scan operations take 
logarithmic time if each processor stores only one item to be scanned. In the present case, each 
processor stores A(T) items and hence this list must be traversed during each step of the scanning. 

8 



Hence step 2 takes 0(A(T) • log |V|). The complexity of step 3 is the same as step 1. Hence the 
overall coloring algorithm has 0(A(T) -log |V|) parallel complexity for each tree. Figure 6 shows the 
coloring algorithm applied to one of the trees in the load redistribution example. Figure 6(a) shows 
the weight assignment on the tree, (b) shows the three steps of the algorithm on the linearized tree 
and (c) shows the resulting coloring assignment on the edges of the tree. 

(a) (c) 

-> forward arc 

-->- interior backward arc 

->■ last backward arc 
(b) 

0-p©^-K^^-jKi>^^ j^>^ J0-JKD -*G^©-jQ-fKD- KD 
1. weights ° 
2. scan sum        12      11      10      10      9       9        8       7       7        6       4       3       3        2       2        1 

3. modulo 0       3 2*03 3 2 

Figure 6: Example (a) Weight assignment (b) Algorithm steps (c) Edge coloring obtained. 

Correctness of the Algorithm 

An initial lemma is stated about the summation in a subtree of the weights assigned by the coloring 
algorithm and then this lemma is used to establish the correctness of the coloring algorithm. 

Let set E'f consist of the forward edges, E[ the interior backward edges and E'„ the last backward 
edges. Also let the non-leaf vertices of T be given by R(T) = {v\v 6 V  and num.child(v) ^ 0}. 

Lemma 1  Given an Euler tour TEuleriY, E') of a rooted tree T, an integer constant c > A(T) and 
the assignment of weights to the arcs of Tßuler 



w(e) = < 

then 

1 ifeeE'j 
0 ife£E'i 
c-num-child(v)   if e 6 E\ 

£ «*«) = c ■ \R(T)\ (1) 
eBE' 

Proof: Simply summing the weights of all the edges gives: 

£ w(e)   =    £ «;(c) + £ 10(e) + 2 ™(e) 

=    |V| - 1 + y^ (c - num-child(v)) 
e€E[ 

=    |v| _ i + c • |J2(T)| - X] numjchild{v) 
e€E't 

=   c\R(T)\ 

We establish the correctness of the algorithm with the following theorem. 

Theorem 1 The algorithm given in Figure 5 edge-colors a tree T using A(T) colors. 

Proof: Note that each of the edges incident on a vertex should have a different number assigned to 
it. It suffices to examine the non-leaf vertices. Let the summed weights be denoted by w'. Given 
u G R(T), there are forward arcs to the children < u, v{ > i = 1,..., nurn-child(u). If u is not the 
root of the tree, the forward arc from the parent < parent(u),u >. It remains to be shown that 
the summed weight modulo A is different for each of these arcs. First this is shown for the arcs 

< u, Vi > i = 1,. • •, numjchild(u). 
Let the w'(< vnum_child{u),u>) = s. Then the summed weights for children are given as: 

num-child(v.) 

w'(u,vi) = s + numjchild(u)-i + l+       £       A(T) • |Ä(T,)| i = l,...,num.child(u) 

where T, denotes the subtree rooted by V{ and the last term is obtained using the Lemma. It 

follows that each edge color is given by: 

color{< u, Vi >) = w'(< u, Vi >) mod A(T) = (s + num.child(u) - i + 1) mod A(T) 

There are two cases: 1) num.child(u) = A(T) which can occur if u is the root of T and 
degree(u) = A(T), and 2) num.child(u) < A(T). In the first case, there is no < parent(u),u > 
arc, so (s + num-child(u) - i +1) mod A for i = 1,..., A is distinct for the forward arcs. In the 
second case, u can have a parent or be the root in which case (s + num.child(u) - i + 1) mod A 
for 1 < i < num.child(u) < A which is distinct for all < u,Vi >. If u has a parent i.e. there is 
an arc < parent(u),u >, then this edge gets (s + num.child(u) + 1) mod A as the color which 
is distinct from the children's color. Thus since forward arcs dictate the color, then all the edges 
incident on a vertex have distinct colors. 

10 



5.2     Criteria for Selecting Elements to Transfer 

Since the work per element can vary with adaptive methods, the selection criteria for deciding 
which elements to move becomes more complex. Consider one of the element movement criteria 
proposed by Lohner [10] as shown in Figure 7. To prevent noisy partition boundaries in (b), 
elements surrounding one of the vertices of the boundary edge are transferred as shown in (c). 
This approach however may pose problems with p-refinement. Since the degrees of freedom on the 
edges and/or in the interior of an element can be increased by p-refinement, the work as well as 
the communication requirements becomes spatially nonuniform. Hence, choosing elements around 
a boundary vertex is not always be the best criteria. Figure 7 (d) illustrates an example in which 
some of the elements have two degrees of freedom on their edges in addition to their nodal support. 
In this case selecting the elements which will cause noisy boundaries will be a better choice, because 
it decreases the communication volume. Figures 7(e) and (f) show the total number of degrees of 
freedom on the partition boundary in each case. 

(a) 

interface dofs=7 

(b) 

interface dofs=5 
(c) 

(d) 

interface dofs=7 

(e) 

interface dofs=5+4=9 

(0 

Figure 7: Lohner's[10] example and selection criteria (a)-(c).  The case when varying number of 
degrees of freedom are present on the edges (d)-(f). 

The most important criteria for element selection are: 

1. Element selection should be done fast since it will be called for each element to be moved. A 
traversal of the list of partition boundary edges to locate the next element to move is required. 

2. As the example of Figure 7 illustrates, the number of degrees of freedom on the partition 
boundary should be kept minimal. This should be done to reduce communication volume. 

3. Elements with a larger load should be favored since this will imply fewer element transfers 
and faster convergence to load balance. 

The current criteria for selecting elements is similar to the approach in Wheat et al. [19] which 
prioritizes the boundary elements. Each partition boundary element has a cost associated with it 

11 



based on: 

1. The element workload which is the total number of degrees of freedom in the interior, on the 

edges and the nodes of the element. 

2. The difference in communication cost that will result if the element is moved. This is equal 
to the total number of degrees of freedom on the edges and the nodes that will be exposed 
to the partition boundary. 

3. The previous moves. This can be optionally used to favor selecting elements which are 
adjacent to a previously moved element. 

The above three pieces of information are represented as a 3 - tuple (Le,De,Pe) and used as a 
cost indicator when moving the elements. The parameter Le refers to the workload on the element 
and it is the most significant part of the cost. The higher Le, the higher the priority of the element 
to move. The reason for assigning the heaviest weight to the workload on the element is to facilitate 
greater reduction in the imbalance between the processors when an element is moved. If all the 
elements have equal work, Le is set to unity. In this case, the number of elements is balanced 
between the partitions. The parameter De refers to the difference in the communication cost and is 
the second most significant part. The communication volume might decrease in which case De > 0 
or remain the same De = 0 or increase De < 0 when the element is moved. Finally, the least 
significant Pe part can be used as a history mechanism for the previous moves. When an element 
is moved, the Pe field of neighboring elements can be marked by 1 so that when the next element 
is to be moved, and both Le and De are the same, the Pe can be used to break ties. In this case, 
since all parameters are equal, the marked Pe will enable the element which was the neighbor of a 
previously moved element to be favored. Given this cost assignment, the next element to move is 
then chosen as the one having the maximum (Le, De, Pe) cost. We illustrate the use of 3-tuple cost 
template by applying it to the example mesh in Figure 8(a-c). For simplicity it is assumed that 
the number of edges gives the communication cost and each element has a workload value of 1. As 
a result boundary elements 2, 4, and 6 which are candidates for moving all have cost (1, -1,0). In 
this case, the load is Le = 1. The communication cost is given by De = 1 - 2 which is the difference 
between the number of currently exposed edges to the number if the element were moved. Finally 
Pe is set to 0 indicating no neighbor has been moved yet. Since all costs are equal, an element will 
be chosen arbitrarily, which is taken to be element 2. The newly exposed elements 1 and 3 are 
inserted into the partition boundary element list and their costs calculated. The elements 1 and 3 
also have their Pe marked as 1 since they are neighbor of a moved element. This field is then used 
to favor their movement in case ties arise in the other Le and De costs. This process is repeated 
until all three elements have been moved. 

5.3    Determining Amount of Load to Send and Convergence 

Suppose a parent processor with load value LQ has m load requesting offspring with load values Li 
i = 1,..., m as shown in Figure 9(a). The criteria for determining how much load to transfer is as 
follows: Each child requests an amount r,- which is equal to the difference from its current load to 
the average of its and its parent's load, i.e. 

Ti=\(Lo-Li)M. (2) 

The parent processor will decide to send a total amount which will make its load become the average 

of the loads £,■ i = 0,..., m : 
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2 4 6 
(1,-1,0)     (1,-1,0)    (1.-1.0) 
move 

13 4 6 
(1,0,1) (1.-1,1)   (1,-1,0)  (1,-1,0) 
move 

3 4 6 8 
(1,-1,1)  (1,-1,0)   (1,-1,0) (1,0,1) 

move 

Figure 8: Example showing how the cost template is used to move three elements. 

tosendtot = LQ — m+l 

The parent determines the individual amounts tosendi to transfer to children in proportion to the 

their load request: 

V' 
tosendi = min{ri,to^sendtot • ^s }• 

Lfj=i r3 

The minimum of the two values is taken in order to prevent transferring loads greater than the re- 
quested load. Figure 9(b) shows the load requests and load grants for a subtree in the redistribution 

example. 
Two important issues that should be addressed in an iterative load balancing algorithm are: 

• Convergence: As the load is transferred iteratively between the processors, the load value on 
each processor should converge to the balanced average load in a finite number of steps. 

• Oscillations: There should not be any indefinite cycles (repeating load transfer patterns) 
while the system is imbalanced. 

Leiss/Reddy [9] prove the following results in [9]. Let an H -neighborhood denote the neighbors 
of a processor within a distance of H, C denote the load treshold value. If elements are taken as 
load units, then C = 1. Also let d indicate the diameter (the maximum of all the shortest paths 
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sender sender 

send=13 

Figure 9: (a) Load request n = |"(Zo - Li)/2] from sender (b) example of transferred amounts 

between any two nodes) of the processor graph which in the present case is the partition graph. 
Finally, define H-neighborhood imbalance at time t as the variance 

GIMBt
H=Y,{L{V)-a)\ 

the processor set, L(p), the load value on each processor and a the average load value 

sor. The results proved are: 
Here P is 
per processor 

1. after a rebalancing iteration GIMBfi1 < GIMB\j and 

2. after balancing terminates, the maximum imbalance in the whole system is bounded by: 

According to the first result, the imbalance in the neighborhood and not necessarily the whole 
system will reach a minimum since the GIMB is decreased after each iteration. The second 
result states that if the system is neighborhood-balanced, the whole system can still be severely 
imbalanced. An example illustrating this worst case scenario is the configuration with n processors 
forming a 1 dimensional chain and each having a load that differs from neighbor only by Li+i -Li = 
1, i.e. a load ramp. If H = 1 and C = 1 and since d = n, then the imbalance after termination of 
the algorithm will be n/2. Increasing the neighborhood measure H to n/2 will balance the system 
globally. However, E = n/2 will require each of the n processors to send messages to the n/2 
H-neighbors. Hence choosing E = n/2 is impractical. In general, the case E > 1 will increase the 
communication volume and hence make the iterative balancing algorithm inefficient. 

To avoid this problem with the Leiss/Reddy approach while keeping E = 1, two modifications 
are made to handle the case when the load difference between the neighboring processors is C. 
Unlike [4] which sends at most [(X0 - Lt)/2\ and considers the L0 - X,- = 1 as balanced, the 
current procedure exchanges the excess load as given in Eq (2) even if the GLMB will remain the 
same. Hence, it allows the case when GIMBfi1 < GIMB^. The second modification involves, 
storing the previous move and making sure that the same excess load will not be transferred back 
to its original holder. This is performed in order to prevent oscillations between two neighboring 
processors i.e. oscillation on a cycle of length 2. Even though the first modification fixes the 
problem of premature termination without global load balancing, the second modification does not 
take care of detecting oscillations which can occur in cycles of length greater than 2. 
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6     Results 

The parallel refinement and the redistribution algorithm has been tested on three problems, follows. 
Starting with an initial coarse mesh, partitioning was performed using the ORB method and the 
partitions mapped onto the torus connected MasPar MP-1 system. The mapped mesh was then 
refined selectively. Unstructured meshes on a square and a curved domain were used for testing the 
redistribution and refinement procedures. The square mesh was refined in one corner to simulate 
the difficult redistribution example involving a ramp load distribution. The curved domain was 
refined near the boundaries to test the parallel refinement and the redistribution algorithm over a 
highly unstructured mesh. Table 1 shows statistics for the test cases. The load on each processor 
in these examples was taken as the number of elements. Figures 7-9 shows the test meshes together 
with the plot of maximum load versus the redistribution iterations. 

In all the test cases, an optimal load balance was obtained with the difference between the 
maximum and the average load per processor in the balanced system less than two. Even though, 
the number of iterations to global load balance took longer as shown in the convergence plots, in 
all the test cases, there was a sharp drop in the imbalance by the end of the first 10 iterations. 
Finally, it was noticed that the maximum number of partition boundary edges may increase as was 
the case in curved mesh. 

Test 
number of 
elements 

Number of 
processors 

Average elements 
per processor 

Load (1 
before 

vlin,Max) 
after 

Max boundary edges 
before          after 

squarel 164 16 10.25 2,32 7,11 14 12 

square2 8296 1024 8.1 8,32 8,10 16 17 

curved 1008 32 31.5 18,47 31,32 22 25 

Table 1: Description the test cases. 

7    Conclusion 

This paper presented a procedure which performs parallel refinement and mesh redistribution to 
be used for adaptive finite element environments. The redistribution algorithm was based on the 
Leiss/Reddy heuristic and offered modifications to prevent possible premature termination. A new 
tree edge coloring algorithm was presented and used to synchronize the load transfers between 
processors. The whole system was tested on various meshes and showed good convergence results. 

There are however some open problems in the load balancing scheme that has been used. First, 
the convergence rate for the Leiss/Reddy heuristic has not been established yet. This is particularly 
difficult to determine since the partition graph changes dynamically. Secondly, even though the 
modifications offered resolve oscillation on cycles of length 2, it is still not known how to efficiently 
detect oscillations on cycles of length greater than 2. Some state information has to be stored to 
detect such oscillations. The tests with a ramp load distribution which was vulnerable for oscillation 
did converge to the average load. However, this does not ensure that the problem cannot arise. 
Finally, the presented coloring algorithm makes it possible to use other element selection criteria 
to be used. In particular, coloring of processors enables the recursive subdivision techniques to be 
used locally on paired processors within the context of the Leiss/Reddy load balancing scheme. 
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Figure 10: Test squarel: (a) unbalanced load after mesh refinement, (b) after redistribution and 

(c) convergence history. 
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Figure 12: Test curved (a) initiai partitioned mesh after orthogonal recursive subdivision (b) refined 
mesh (c) redistributed mesh and (d) convergence history. 

18 


